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Finding Time and Longitude by Lunar Distances

In celestial navigation, time and longitude are interdependent. Finding one’s longitude at sea or in unknown terrain is
impossible without knowing the exact time and vice versa. Therefore, old-time navigators were basically restricted to
latitude sailing on long voyages, i. e., they had to sail along a chosen parallel of latitude until they came in sight of the
coast. Since there was no reliable estimate of the time of arrival, many ships ran ashore during periods of darkness or
bad visibility. Spurred by heavy losses of men and material,scientists tried to solve the longitude problem by using
astronomical events as time marks. In principle, such a method is only suitable when the observed time of the event is
virtually independent of the observer’s geographic position.

Measuring time by the apparent movement of the moon with respect to the background of fixed stars was suggested in
the 15th century already (Regiomontanus) but proved impracticable since neither reliable ephemerides for the moon nor
precise instruments for measuring angles were available at that time.

Around the middle of the 18th century, astronomy and instrument making had finally reached a stage of development
that made time measurement by lunar observations possible.Particularly, deriving the time from a so-calledlunar
distance, the angular distance of the moon from a chosen reference body, became a popular method. Although the
procedure is rather cumbersome, it became an essential partof celestial navigation and was used far into the 19th

century, long after the invention of the mechanical chronometer (Harrison, 1736). This was mainly due to the limited
availability of reliable chronometers and their exorbitant price. When chronometers became affordable around the
middle of the 19th century, lunar distances gradually went out of use. Until 1906, the Nautical Almanac included lunar
distance tables showing predicted geocentric angular distances between the moon and selected bodies in 3-hour
intervals.* After the tables were dropped, lunar distancesfell more or less into oblivion. Not much later, radio time
signals became available world-wide, and the longitude problem was solved once and for all. Today, lunar distances are
mainly of historical interest. The method is so ingenious, however, that a detailed study is worthwhile. 

The basic idea of the lunar distance method is easy to comprehend. Since the moon moves across the celestial sphere at
a rate of about 0.5° per hour, the angular distance between the moon, M, and a body in her path, B, varies at a similar
rate and rapidly enough to be used to measure the time. The time corresponding with an observed lunar distance can be
found by comparison with tabulated values.

Tabulated lunar distances are calculated from the geocentric equatorial coordinates of M and B using the cosine law:

or

[ ] [ ]( )[ ]hRAhRADECDECDECDECD BMBMBM −⋅⋅⋅+⋅= 15coscoscossinsincos

D is the geocentric lunar distance. These formulas can be used to set up one’s own table with the aid of the Nautical
Almanac or any computer almanac if a lunar distance table is not available.

*Almost a century after the original Lunar Distance Tables were dropped, Steven Wepster resumed the tradition.
  His tables are presently (2004) available through the internet [14].

Clearing the lunar distance

Before a lunar distance measured by the observer can be compared with tabulated values, it has to be reduced to the
corresponding geocentric angle by clearing it from the effects of refraction and parallax. This essential process is called
clearing the lunar distance. Numerous procedures have been developed, among them rigorous and “quick” methods.
In the following, we will discuss the almost identical methods by Dunthorne (1766) andYoung (1856). They are
rigorous for a spherical model of the earth.
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Fig. 7-1 shows the positions of the moon and a reference body in the coordinate system of the horizon. We denote the
apparent positions of the centers of the moon and the reference body by Mapp and Bapp, respectively. Z is the zenith.

The side Dapp of the spherical triangle Bapp-Z-Mapp is the apparent lunar distance. The altitudes of Mapp and Bapp (obtained
after applying the corrections for index error, dip, and semidiameter) are HMapp and HBapp, respectively. The vertical
circles of both bodies form the angleα, the difference between the azimuth of the moon, AzM, and the azimuth of the
reference body, AzB:

BM AzAzα −=

The position of each body is shifted along its vertical circle by atmospheric refraction and parallax in altitude. After
correcting HMapp and HBapp for both effects, we obtain the geocentric positions M and B.We denote the altitude of M by
HM and the altitude of B by HB. HM is always greater than HMapp because the parallax of the moon is always greater than
refraction. The angle α is neither affected by refraction nor by the parallax in altitude:

BappBMappM AzAzAzAz ==

The side D of the spherical triangle B-Z-M is the unknown geocentric lunar distance. If we knew the exact value forα,
calculation of D would be very simple (cosine law). Unfortunately, the navigator has no means for measuringα
precisely. It is possible, however, to calculate D solely from the five quantities Dapp, HMapp, HM, HBapp, and HB.

Applying the cosine formula to the spherical triangle formed by the zenith and the apparent positions, we get:αHHHHD BappMappBappMappapp coscoscossinsincos ⋅⋅+⋅=

Repeating the procedure with the spherical triangle formed by the zenith and the geocentric positions, we get:αHHHHD BMBM coscoscossinsincos ⋅⋅+⋅=
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Since α is constant, we can combine both azimuth formulas:
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Thus, we have eliminated the unknown angle α. Now, we subtract unity from both sides of the equation:
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Using the addition formula for cosines, we have:
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Solving for cos D, we obtain Dunthorne’s formula for clearing the lunar distance:
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Adding unity to both sides of the equation instead of subtracting it, leads to Young’s formula:
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Procedure

Deriving UT from a lunar distance comprises the following steps:

1.

We measure the altitude of the upper or lower limb of the moon,whichever is visible, and note the watch time of the
observation, WT1LMapp.
We apply the corrections for index error and dip (if necessary) and get the apparent altitude of the limb, H1LMapp. We
repeat the procedure with the reference body and obtain the watch time WT1Bapp  and the altitude H1Bapp.

2.

We measure the angular distance between the limb of the moon and the reference body, DLapp, and note the
corresponding watch time, WTD. The angle DLapp has to be measured with the greatest possible precision. It is
recommended to measure a few DLapp values and their corresponding WTD values in rapid succession and calculate the
respective average value. When the moon is almost full, it isnot quite easy to distinguish the limb of the moon from the
terminator (shadow line). In general, the limb has a sharp appearance whereas the terminator is slightly indistinct.



3.

We measure the altitudes of both bodies again, as described above. We denote them by H2LMapp and H2Bapp, and note the
corresponding watch times of observation, WT2LMapp and WT2Bapp.

4.
Since the observations are only a few minutes apart, we can calculate the altitude of the respective body at the moment
of the lunar distance observation by linear interpolation:
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5.

We correct the altitude of the moon and the angular distance DLapp for the augmented semidiameter of the moon, SDaug.
The latter can be calculated directly from the altitude of the upper or lower limb of the moon:
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The altitude correction is:
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The rules for the lunar distance correction are:
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The above procedure is an approximation since the augmentedsemidiameter is a function of the altitude corrected for
refraction. Since refraction is a small quantity and since the total augmentation between 0° and 90° altitude is only
approx. 0.3’, the resulting error is very small and  may be ignored.

The sun, when chosen as reference body, requires the same corrections for semidiameter. Since the sun does not show a
measurable augmentation, we can use the geocentric semidiameter tabulated in the Nautical Almanac or calculated with
a computer program.

6.

We correct both altitudes, HMapp and HBapp, for atmospheric refraction, R.
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Ri is subtracted from the respective altitude. The refractionformula is only accurate for altitudes above approx. 10°.
Lower altitudes should be avoided anyway since refraction may become erratic and since the apparent disk of the moon
(and sun) assumes an oval shape caused by an increasing difference in refraction for upper and lower limb. This
distortion would affect the semidiameter with respect to the reference body in a complicated way.

7.

We correct the altitudes for the parallax in altitude:
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We apply the altitude corrections as follows:

BBappBappBMMappMappM PRHHPRHH +−=+−=

The correction for parallax is not applied to the altitude of a fixed star (HPB = 0).

8.

With Dapp, HMapp, HM, HBapp, and HB, we calculate D using Dunthorne’s or Young’s formula.

9.

The time corresponding with the geocentric distance D is found by interpolation. Lunar distance tables show D as a
function of time, T (UT). If the rate of change of D does not vary too much (less than approx. 0.3’ in 3 hours), we can
use linear interpolation. However, in order to find T, we have to consider T as a function of D (inverse interpolation).
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TD is the unknown time corresponding with D. D1 and D2 are tabulated lunar distances. T1 and T2 are the corresponding
time (UT) values (T2 = T1 + 3h). D is the geocentric lunar distance calculated from Dapp. D has to be between D1 and D2.

If the rate of change of D varies significantly, more accurate results are obtained with methods for non-linear
interpolation, for example, with 3-pointLagrangeinterpolation. Choosing three pairs of tabulated values, (T1, D1), (T2,
D2), and (T3, D3), TD is calculated as follows:
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D may have any value between D1 and D3.

There must not be a minimum or maximum of D in the time interval[T1, T3]. This problem does not occur with a
properly chosen body having a suitable rate of change of D. Near a minimum or maximum of D,∆D/∆T would be very
small, and the observation would be erratic anyway. 

After finding TD, we can calculate the watch error, ∆T.

∆T is the difference between our watch time at the moment of observation, WTD, and the time found by interpolation,
TD:
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Subtracting the watch error from the watch time, WT, results in UT.
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Improvements

The procedures described so far refer to a spherical earth. In reality, however, the earth has approximately the shape of
an ellipsoid flattened at the poles. This leads to small but measurable effects when observing the moon, the body nearest
to the earth. First, the parallax in altitude differs slightly from the value calculated for a spherical earth. Second, there is
a small parallax in azimuth which would not exist if the earthwere a sphere (see chapter 9). If no correction is applied,
D may contain an error of up to approx. 0.2’. The following formulas refer to an observer on the surface of the
reference ellipsoid (approximately at sea level).

The corrections require knowledge of the observer’s latitude, Lat, the true azimuth of the moon, AzM, and the true
azimuth of the reference body, AzB.

Since the corrections are small, the three values do not needto be very accurate. Errors of a few degrees are tolerable.
Instead of the azimuth, the compass bearing of each body, corrected for magnetic declination, may be used.

Parallax in altitude:

This correction is applied to the parallax in altitude and isused to calculate HM with higher precision before clearing the
lunar distance.

f is the flattening of the earth:   
257.298

1=f
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Parallax in azimuth:

The correction for the parallax in azimuth is applied after calculating HM and D. The following formula is a fairly
accurate approximation of the parallax in azimuth, ∆AzM:
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In order to find, how ∆AzM affects D, we go back to the cosine formula: αHHHHD BMBM coscoscossinsincos ⋅⋅+⋅=

We differentiate the equation with respect to α:
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Since MAzddα = , the change in D caused by an infinitesimal change in AzM is:
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With a small but measurable change in AzM, we have:
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Combining the formulas for ∆AzM and ∆D, we get:

Accuracy

According to modern requirements, the lunar distance method is horribly inaccurate. In the 18th and early 19th century,
however, this was generally accepted because a longitude with an error of 0.5°-1° was still better than no longitude at
all. Said error is the approximate result of an error of only 1’ in the measurement of DLapp, not uncommon for a sextant
reading under practical conditions. Therefore, DLapp should be measured with greatest care.

The altitudes of both bodies do not quite require the same degree of precision because a small error in the apparent
altitude leads to about the same error in the geocentric altitude. Since both errors cancel each other to a large extent, the
resulting error in D is comparatively small. An altitude error of a few arcminutes is tolerable in most cases. Therefore,
measuring two altitudes of each body and finding the altitude at the moment of the lunar distance observation by
interpolation is not absolutely necessary. Measuring a single altitude of each body shortly before or after the lunar
distance measurement is sufficient if a small loss in accuracy is accepted.

The position of the reference body with respect to the moon iscrucial. The standard deviation of a time value obtained
by lunar distance is inversely proportional to the rate of change of D. Since the plane of the lunar orbit forms a
relatively small angle (approx. 5°) with the ecliptic, bright bodies in the vicinity of the ecliptic are most suitable (sun,
planets, selected stars). The stars generally recommendedfor the lunar distance method are Aldebaran, Altair, Antares,
Fomalhaut, Hamal, Markab, Pollux, Regulus, and Spica, but other stars close to the ecliptic may be used as well, e. g.,
Nunki. The lunar distance tables of theNautical Almanaccontained only D values for those bodies having a favorable
position with respect to the moon on the day of observation. If in doubt, the navigator should check the rate of change
of D. The latter becomes zero when D passes through a minimum or maximum, making an observation useless.
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