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Finding Time and Longitude by Lunar Distances

In celestial navigation, time and longitude are interdeleen. Finding one’s longitude at sea or in unknown terrain is
impossible without knowing the exact time and vice versaeréfore, old-time navigators were basically restricted to

latitude sailing on long voyages, i. e., they had to sail glarchosen parallel of latitude until they came in sight of the

coast. Since there was no reliable estimate of the time ofahrmany ships ran ashore during periods of darkness or
bad visibility. Spurred by heavy losses of men and matesikntists tried to solve the longitude problem by using

astronomical events as time marks. In principle, such a adkith only suitable when the observed time of the event is
virtually independent of the observer’s geograjgusition.

Measuring time by the apparent movement of the moon wither@dp the background of fixed stars was suggested in
the 18" century alreadyRegiomontanysbut proved impracticable since neither reliable ephedesrior the moon nor
precise instruments for measuring angles wereahlailat that time.

Around the middle of the T8century, astronomy and instrument making had finally redch stage of development
that made time measurement by lunar observations pos$tbiicularly, deriving the time from a so-callédnar
distance, the angular distance of the moon from a chosen reference, thetame a popular method. Although the
procedure is rather cumbersome, it became an essentiabfadlestial navigation and was used far into thé' 19
century, long after the invention of the mechanical chroatenHarrison, 1736). This was mainly due to the limited
availability of reliable chronometers and their exorbitgnice. When chronometers became affordable around the
middle of the 19 century, lunar distances gradually went out of use. Untflg,3he Nautical AlImanac included lunar
distance tables showing predicted geocentric angulaamiss between the moon and selected bodies in 3-hour
intervals.* After the tables were dropped, lunar distanfedismore or less into oblivion. Not much later, radio time
signals became available world-wide, and the longitudélpra was solved once and for all. Today, lunar distances are
mainly of historical interest. The method is soen@pus, however, that a detailed study is worthevhil

The basic idea of the lunar distance method is easy to corapeelsince the moon moves across the celestial sphere at
a rate of about 0.5° per hour, the angular distance betweemtion, M, and a body in her path, B, varies at a similar
rate and rapidly enough to be used to measure the time. Tleectimmesponding with an observed lunar distance can be
found by comparison with tabulated values.

Tabulated lunar distances are calculated from doegntric equatorial coordinates of M and B ushegydosine law:

cosD =sinDEC,, [sinDEC, +cosDEC,, [coSDEC, [cos(GHA, —~GHA,)
or

cosD =sinDEC,, [sinDEC, +cosDEG,, [cosDEC, [cos[15[(RA, [h]- RA[h] )]

D is the geocentric lunar distance. These formulas can ba tasset up one’s own table with the aid of the Nautical
Almanac or any computer almanac if a lunar distaabée is not available.

*Almost a century after the original Lunar Distance Tables were dropped, StevereiWepsmed the tradition.
His tables are presently (2004) available through the internet [14].

Clearing the lunar distance

Before a lunar distance measured by the observer can be oednwith tabulated values, it has to be reduced to the
corresponding geocentric angle by clearing it from theatffef refraction and parallax. This essential processlisdta
clearing the lunar distance. Numerous procedures have been developed, among therouggand “quick” methods.

In the following, we will discuss the almost identical metisoby Dunthorne (1766) andYoung(1856). They are
rigorous for a spherical model of the earth.



Fig. 7-1 shows the positions of the moon and a reference bothei coordinate system of the horizon. We denote the
apparent positions of the centers of the moon badeference body by i and By, respectively. Z is the zenith.

z

Plane of Harizon

The side Qy,of the spherical triangle B-Z-Mqgpis the apparent lunar distance. The altitudes gf,lhd By, (obtained
after applying the corrections for index error, dip, and &kameter) are I and Hsapp respectively. The vertical
circles of both bodies form the angte the difference between the azimuth of the moony,Aemd the azimuth of the
reference body, Az

a=Az, - Az,
The position of each body is shifted along its vertical @rbly atmospheric refraction and parallax in altitude. After
correcting hhapp and Heapp for both effects, we obtain the geocentric positions M and@. denote the altitude of M by

Hw and the altitude of B by K Hw is always greater thanyd, because the parallax of the moon is always greater than
refraction. The angla is neither affected by refraction nor by the parain altitude:

AZM = AzMapp AZB = AZBapp
The side D of the spherical triangle B-Z-M is the unknown gedc lunar distance. If we knew the exact valuedor

calculation of D would be very simple (cosine law). Unforaibely, the navigator has no means for measuing
precisely. It is possible, however, to calculatedlely from the five quantities £, Hvapp, Hu, Haapp @nd H.

Applying the cosine formula to the spherical trinfiprmed by the zenith and the apparent positiesget:

cosD,,, =sinH,,, [sinHg,  +cosH,, [cosHg,, [cosa
oSy = cosD,,, —sinHy,,,[sinHg,
COSH yp, [€OSH g,

Repeating the procedure with the spherical triafgi@ed by the zenith and the geocentric positiaresget:

cosD =sinH,, [sinH, +cosH,, [cosH [cosa

cosD -sinH,, [sin H,
cosH,, [¢osH,

COSa =

Sincea is constant, we can combine both azimuth formulas:

cosD-sinH,, BinH, _ cosD,, —sinH,, [sinH

cosH,, [¢osH, - cosH (¢osH

Bapp

Mapp Bapp



Thus, we have eliminated the unknown arml&ow, we subtract unity from both sides of theapn:

cosD -sinH,, [$in H, 1 = cosD,,,=sinH, . [sinHg, 1

cosH,, [cosH, cosH,,,,[ltosH;,
cosD -sinH, BinH, cosH, [tosH, _ cosD,,,—sinH,, [sinHy,  cosH,,, [COSHg,,,
cosH,, LcosH, cosH,, [tosH, cosH,,,,,[EosH,, cosH,,,,,[€osH;,
cosD -sinH,, (8in H, —cosH,, (tosH, _ cosD,,—sinH,, [sinHy, —cosH,, [cosH,

cosH,, [tosH, cosH,,,,, [€osHg,
Using the addition formula for cosines, we have:
cosD-cos(H,, ~Hg) _ €OSD.y— COS(H mapp — Bapp)
cosH,, [¢osH, cosH,,,, [€OSH g,

Solving for cos D, we obtaiDunthorne’sformula for clearing the lunar distance:

cosH,, [cosH,
cosH,,,,, [tosH

cosD = fcos Doy~ cos(H vapp — H Bapp) | +cos(H,, -H,)

Mapp Bapp

Adding unity to both sides of the equation instefdubtracting it, leads téoung’sformula:

cosH,, [cosH,
cosH [cosH

cosD = +H

Eﬁ cosDapp+cos(H Vo Bapp)] —cos(H,, +H,)

Mapp Bapp

Procedure

Deriving UT from a lunar distance comprises théofelng steps:

1.

We measure the altitude of the upper or lower limb of the madrichever is visible, and note the watch time of the
observation, WTapp.

We apply the corrections for index error and dip (if necegsand get the apparent altitude of the limb, k.. We
repeat the procedure with the reference body atalrothe watch time WTgl,, and the altitude Hlyp

2.

We measure the angular distance between the limb of the madntlze reference body, B, and note the
corresponding watch time, WT The angle Dy, has to be measured with the greatest possible precisiors. It i
recommended to measure a fewvalues and their corresponding \d/Values in rapid succession and calculate the
respective average value. When the moon is almost full ribtgjuite easy to distinguish the limb of the moon from the
terminator (shadow line). In general, the limb hasharp appearance whereas the terminator islglightstinct.



3.

We measure the altitudes of both bodies again, as desciitme aWe denote them by H2,, and H2.,, and note the
corresponding watch times of observation, Wil and WT 2,

4,
Since the observations are only a few minutes apart, we daulate the altitude of the respective body at the moment
of the lunar distance observation by linear inté&afon:

Huvmaon = Hl sy + (H Zeuipg — H L ) e 2 2 v
LMapp — L Mapp LMapp LMapp WTZLMapp _WTlLMapp
WT, ~WT],
H oo = Higyoo + B2pp
Bapp Bapp ( Bapp 1Bapp) WTzBapp _WTlBapp

5.

We correct the altitude of the moon and the angular distangg for the augmented semidiameter of the moon..$D
The latter can be calculated directly from thetadie of the upper or lower limb of the moon:

tanSD,, = I a k=0.2725
\/S”’]ZHPM - (COSH LMapp + k) Sin H LMapp
upperlimb: cos - owerlimb: cos
dimb: cosH oo~k lowerlimb: cosH, .., +k
The altitude correction is:
Lowerlimb:  Hy.00 = H yap, + SDyyq
Upperlimb:  Hy,0 = H yapp = SDyyq

The rules for the lunar distance correction are:

Limb of moon towadsreferencebody: Dapp = Diapp +SD.

Lapp ‘aug
Limb of moonawayfrom referencebody: Dapp = Dyapp = SDyyg

The above procedure is an approximation since the augmsateitliameter is a function of the altitude corrected for
refraction. Since refraction is a small quantity and sirtoe total augmentation between 0° and 90° altitude is only
approx. 0.3’, the resulting error is very small améy be ignored.

The sun, when chosen as reference body, requires the sareetimrs for semidiameter. Since the sun does not show a
measurable augmentation, we can use the geocentric semigiatabulated in the Nautical Almanac or calculated with
a computer program.

6.

We correct both altitudes,vghp, and Haypp, for atmospheric refraction, R.

R[1=P [mbar] 283 Eﬁo.97127 0.0013

7
- I = Mapp, Ba H, >10°
1010 T[C]+273 tanH, tanSHij Ph =app !



R is subtracted from the respective altitude. The refractoymula is only accurate for altitudes above approx. 10°.
Lower altitudes should be avoided anyway since refractiay become erratic and since the apparent disk of the moon
(and sun) assumes an oval shape caused by an increasingritiffein refraction for upper and lower limb. This
distortion would affect the semidiameter with reste the reference body in a complicated way.

We correct the altitudes for the parallax in aftéu

sinB, =sinHR, [cos( Mapp RMapp) sinP, =sinHR, [cos(H Bapp — RBapp)

We apply the altitude corrections as follows:

Mapp RMapp M H B = H Bapp - RBapp + I:)B

The correction for parallax is not applied to thté&wde of a fixed star (H&= 0).

H

8.

With Dapp, Huaps Hw, Heapp @nd H, we calculate D usinBunthorne’sor Young'sformula.

9.

The time corresponding with the geocentric distance D isfoby interpolation. Lunar distance tables show D as a
function of time, T (UT). If the rate of change of D does notyw&ro much (less than approx. 0.3’ in 3 hours), we can
use linear interpolation. However, in order to fidwve have to consider T as a function of D (iseenterpolation).

TD :Tl + (Tz _Tl) EIEI;) __Dl

2 Dl

Tp is the unknown time corresponding with D; Bnd Dy are tabulated lunar distances.and T, are the corresponding
time (UT) values (T= T: + 3h). D is the geocentric lunar distance caleddtom Dy, D has to be between @Bnd D.

If the rate of change of D varies significantly, more acceratsults are obtained with methods for non-linear

interpolation, for example, with 3-poittagrangeinterpolation. Choosing three pairs of tabulated valugs, .), (T,
D), and (&, Ds), To is calculated as follows:

I _TE§D -D,)i(D —D) (D -D,)i(D -D,) TE((D -p,)i(D -D,)

D,-D,){D,~D,) " (D,-D,){D,-D,) " ° (D,~D,)(D,-D,)

T,=T,+3h, T,=T,+3h, D,<D,<D, or D,>D,>D,

D may have any value betweend&hd Q.

There must not be a minimum or maximum of D in the time intefffal Ts]. This problem does not occur with a
properly chosen body having a suitable rate of change of @r Beninimum or maximum of DAD/AT would be very
small, and the observation would be erratic anyway.

After finding Tp, we can calculate the watch errAf,.

AT is the difference between our watch time at the moment oéagion, Wb, and the time found by interpolation,
To:

AT =WT, - T,



Subtracting the watch error from the watch time,, WeBults in UT.

UT =WT-AT

I mprovements

The procedures described so far refer to a spherical eartieality, however, the earth has approximately the shape of
an ellipsoid flattened at the poles. This leadsntall but measurable effects when observing thenmibe body nearest

to the earth. First, the parallax in altitude differs sligtitom the value calculated for a spherical earth. Secdmatetis

a small parallax in azimuth which would not exist if the eastbre a sphere (see chapter 9). If no correction is applied,
D may contain an error of up to approx. 0.2’. The followingrfardas refer to an observer on the surface of the
reference ellipsoid (approximately at sea level).

The corrections require knowledge of the observer’s ldéfu_at, the true azimuth of the moon, Wzand the true
azimuth of the reference body, &z

Since the corrections are small, the three values do not toeleel very accurate. Errors of a few degrees are tolerable.
Instead of the azimuth, the compass bearing of badi, corrected for magnetic declination, may bedu
Parallax in altitude:

This correction is applied to the parallax in altitude andsged to calculate tdwith higher precision before clearing the
lunar distance.

AR, = f [HR, Osin(2Lat) ©osAz, BinH,,,, —sin’ Lat tosH

Mapp Mapp]

1

fis the flattening of the earth:f = ———
29€.257

P, =P, +AP,

,improved

H M = H Mapp - Rl\/Iapp + PM ,improved

Parallax in azimuth:

The correction for the parallax in azimuth is applied aftefcalating H, and D. The following formula is a fairly
accurate approximation of the parallax in azim#zy:

(2[Lat)lsin Az,
cosH,,

AAz, = f (HR, 21

In order to find, howAAzy affects D, we go back to the cosine formula:
cosD =sinH,, [sinH, +cosH,, [cosH; [cosa

We differentiate the equation with respectito

@: —-cosH,, [tosH; [$ina
(4

d(cosD)= -cosH,, [cosH, [sina [da



d(cosD)= -sinD[dD
—-sinD[dD = —cosH,, [cosH [sina[da

cosH,, [cosH [sina
sinD

dD = Cdlo

Sinceda = d Az, , the change in D caused by an infinitesimal change is:

cosH,, [cosH, [sina

dD = [dA
sinD &
With a small but measurable change in,Awe have:
AD = cosH,, [c.osHB [sina DAz,
sinD
Dimproved = D + A D

Combining the formulas fakAzy andAD, we get:

fosH, [sin(2[ Lat)[sin Az, [sin(Az, - Az,)
sinD

D, oes= D+ f [HP,

improved

Accuracy

According to modern requirements, the lunar distance neethdorribly inaccurate. In the T8&nd early 19 century,
however, this was generally accepted because a longitutieawierror of 0.5°-1° was still better than no longitude at
all. Said error is the approximate result of an error of orilinthe measurement of R, not uncommon for a sextant
reading under practical conditions. ThereforggI3hould be measured with greatest care.

The altitudes of both bodies do not quite require the sameegegf precision because a small error in the apparent
altitude leads to about the same error in the geocentric@déti Since both errors cancel each other to a large extent, t
resulting error in D is comparatively small. An altitudearof a few arcminutes is tolerable in most cases. Therefore,
measuring two altitudes of each body and finding the alétad the moment of the lunar distance observation by
interpolation is not absolutely necessary. Measuring glaialtitude of each body shortly before or after the lunar
distance measurement is sufficient if a small lnsgccuracy is accepted.

The position of the reference body with respect to the moanmusial. The standard deviation of a time value obtained
by lunar distance is inversely proportional to the rate ofirde of D. Since the plane of the lunar orbit forms a
relatively small angle (approx. 5°) with the ecliptic, drigoodies in the vicinity of the ecliptic are most suitablar(s
planets, selected stars). The stars generally recommdadduk lunar distance method are Aldebaran, Altair, Argare
Fomalhaut, Hamal, Markab, Pollux, Regulus, and Spica, thercstars close to the ecliptic may be used as well, e. g.,
Nunki. The lunar distance tables of thiautical Almanaaontained only D values for those bodies having a favorable
position with respect to the moon on the day of observatibim dloubt, the navigator should check the rate of change
of D. The latter becomes zero when D passes thrauglmimum or maximum, making an observation useles



