
Chapter 4 Copyright © 1997-2004 Henning Umland     All Rights Reserved

Finding One's Position (Sight Reduction)

Lines of Position

Any geometrical or physical line passing through the observer's (still unknown) position and accessible through
measurement or observation is called aline of position or position line, LOP. Examples are circles of equal altitude,
meridians, parallels of latitude, bearing lines (compass bearings) of terrestrial objects, coastlines, rivers, roads, railroad
tracks, power lines, etc.A single position line indicates an infinite series of possible positions.The observer's actual
position is marked by the point of intersection of at least two position lines, regardless of their nature. A position thus
found is called fix  in navigator's language. The concept of the position line is essential to modern navigation.

Sight Reduction

Finding a line of position by observation of a celestial object is calledsight reduction. Although some background in
mathematics is required to comprehend the process completely, knowing the basic concepts and a few equations is
sufficient for most practical applications. The geometrical background (law of cosines, navigational triangle) is given in
chapter 10 and 11. In the following, we will discuss the semi-graphic methods developed bySumnerandSt. Hilaire.
Both methods require relatively simple calculations only and enable the navigator to plot lines of position on a
navigation chart or plotting sheet (see chapter 13).

Knowing altitude and GP of a body, we also know the radius of the corresponding circle of equal altitude (our line of
position) and the location of its center. As mentioned in chapter 1 already, plotting circles of equal altitude on a chartis
usually impossible due to their large dimensions and the distortions caused by map projection. However,SumnerandSt.
Hilaire showed that only a short arc of each circle of equal altitude is needed to find one's position. Since this arc is
comparatively short, it can be replaced with a secant or tangent a of the circle.

Local Meridian, Local Hour Angle and Meridian Angle

A meridian passing through a given position is calledlocal meridian. In celestial navigation, the angle formed by the
hour circle of the observed body (upper branch) and the localmeridian (upper branch) plays a fundamental role. In
analogy with the Greenwich hour angle, we can measure this angle westward from the local meridian (0°...+360°). In
this case, the angle is calledlocal hour angle, LHA . It is also possible to measure the angle westward (0°...+180°) or
eastward (0°...−180°) from the local meridian in wich case it is calledmeridian angle, t. In most navigational formulas,
LHA and t can be substituted for each other since the trigonometric functions return the same results for either of both
angles. For example, the cosine of +315° is the same as the cosine of −45°.

LHA as well as t is the algebraic sum of the Greenwich hour angle of the body, GHA, and the observer's longitude, Lon.
To make sure that the obtained angle is in the desired range, the following rules have to be applied when forming the
sum of GHA and Lon:

In all calculations, the sign of  Lon and t, respectively, has to be observed carefully. The sign convention is:

Eastern longitude: positive
Western longitude: negative

Eastern meridian angle: negative
Western meridian angle: positive









°>+°−+
°<+°++

°<+<°+
=

360if360

0if360

3600if

LonGHALonGHA

LonGHALonGHA

LonGHALonGHA

LHA





°>+°−+
°<++

=
180if360

180if

LonGHALonGHA

LonGHALonGHA
t



For reasons of symmetry, we will refer to the meridian angle in the following considerations although the local hour
angle would lead to the same results (a body has the same altitude with the meridian angle +t and −t, respectively).

Fig. 4-1 illustrates the various angles involved in the sight reduction process.

Sumner’s Method

In December 1837,Thomas H Sumner, an American sea captain, was on a voyage from South Carolinato Greenock,
Scotland. When approachingSt. George's Channelbetween Ireland and Wales, he managed to measure a single altitude
of the sun after a longer period of bad weather. Using the timesight formula (see chapter 6), he calculated a longitude
from his estimated latitude. Since he was doubtful about hisestimate, he repeated his calculations with two slightly
different latitudes. To his surprise, the three points thusobtained were on a straight line. Accidentally, the line passed
through the position of a light house off the coast of Wales (Small's Light). By intuition, Sumner steered his ship along
this line and soon after,Small's Lightcame in sight. Sumner concluded that he had found a ''line of equal altitude''. The
publication of his method in 1843 marked the beginning of “modern“ celestial navigation [18]. Although rarely used
today, it is still an interesting alternative. It is easy to comprehend and the calculations to be done are extremely simple.

Fig. 4-2 illustrates the points where a circle of equal altitude intersects two chosen parallals of latitude.

An observer being between Lat1 and Lat2 is either on the arc A-B or on the arc C-D. With a rough estimateof his
longitude, the observer can easily find on which of both arcshe is, for example, A-B. The arc thus found is the relevant
part of his line of position, the other arc is discarded. We can approximate the line of position by drawing a straight line
through A and B which is a secant of the circle of equal altitude. This secant is calledSumner line. Before plotting the
Sumner line on our chart, we have to find the longitude of each point of intersection, A, B, C, and D.

Procedure:
1.

We choose a parallel of latitude (Lat1) north of our estimated latitude. Preferably, Lat1 should be marked by the nearest
horizontal grid line on our chart or plotting sheet.



2.

From Lat1 , Dec, and the observed altitude, Ho, we calculate the meridian angle, t, using the following formula:

The equation is derived from the navigational triangle (chapter 10 & 11). It has two solutions, +t and –t, since the cosine
of +t equals the cosine of –t. Geometrically, this corresponds with the fact that the circle of equal altitude intersectsthe
parallel of latitude at two points. Using the following formulas and rules, we obtain the longitudes of these points of
intersection, Lon and Lon':

Comparing the longitudes thus obtained with our estimate, we select the relevant longitude and discard the other one.
This method of finding one's longitude is called time sight (see chapter 6).

3.

We chose a parallel of latitude (Lat2) south of our estimated latitude. The difference between Lat1 and Lat2 should not
exceed 1 or 2 degrees. We repeat steps 1 and 2 with the second latitude, Lat2.

4.

On our plotting sheet, we mark each remaining longitude on the corresponding parallel and plot the Sumner line through
the points thus located (LOP1).

To obtain a fix, we repeat steps 1 through 4 with the same parallels and the declination and observed altitude of a second
body. The point where the Sumner line thus obtained, LOP2, intersects LOP1 is our fix (Fig. 4-3).
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If we have only a very rough estimate of our latitude, the point of intersection may be slightly outside the interval
defined by both parallels. Nevertheless, the fix is correct. A fix obtained withSumner'smethod has a small error caused
by neglecting the curvature of the circles of equal altitude. We can improve the fix by iteration. In this case, we choose a
new pair of assumed latitudes, nearer to the fix, and repeat the procedure. Ideally, the horizontal distance between both
bodies should be 90° (30°...150° is tolerable). Otherwise,the fix would become indistinct. Further, neither of the bodies
should be near the local meridian (see time sight, chapter 6). Sumner'smethod has the (small) advantage that no
protractor is needed to plot lines of position.

The Intercept Method

This procedure was developed by the French navy officerSt. Hilaire and others and was first published in 1875. After
that, it gradually became the standard for sight reduction since it avoids some of the restrictions ofSumner'smethod.
Although the background is more complicated than with Sumner's method, the practical application is very convenient.

Theory:

For any given position of the observer, the altitude of a celestial body, reduced to the celestial horizon, issolely a
function of the observer's latitude, the declination of the body, and the meridian angle (or local hour angle). The altitude
formula  is obtained by applying the law of cosine for sides to the navigational triangle (see chapter 10 & 11):

We choose an arbitrary point in the vicinity of our estimatedposition, preferably the nearest point where two grid lines
on the chart intersect. This point is calledassumed position, AP (Fig. 4-2). Using the above formula, we calculate the
altitude of the body resulting from LatAP and LonAP, the geographic coordinates of AP. The altitude thus obtained is
called computed or calculated altitude, Hc.

Usually, Hc will slightly differ from the actuallyobserved altitude, Ho (see chapter 2). The difference,
�

H, is called
intercept.

Ideally, Ho and Hc are identical if the observer is at AP.

In the following, we will discuss which possible positions of the observer would result in the same intercept,
�

H. For
this purpose, we assume that the intercept is an infinitesimal quantity and denote it by dH. The general formula is:

This differential equation has an infinite number of solutions. Since dH and both differential coefficients are constant, it
can be reduced to an equation of the general form:

Thus, the graph is a straight line, and it is sufficient to dicuss two special cases, dt=0 and dLat=0, respectively.

In the first case, the observer is on the same meridian as AP, and dH is solely caused by a small change in latitude, dLat,
whereas t is constant (dt = 0). We differentiate the altitude formula with respect to Lat:
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Adding dLat to LatAP, we obtain the point P1, as illustrated in Fig.4-4. P1 is on the observer's circle of equal altitude.

In the second case, the observer is on the same parallel of latitude as AP, and dH is solely caused by a small change in
the meridian angle, dt, whereas Lat is constant (dLat=0). We differentiate the altitude formula with respect to t:

Adding dt (corresponding with an equal change in longitude,dLon) to LonAP, we obtain the point P2 which, too, is on
the observer's circle of equal altitude. Thus, we would measure Ho at P1 and P2, respectively. Knowing P1 and P2, we
can plot a straight line passing through these positions. This line is a tangent of the circle of equal altitude and is our line
of position, LOP. The great circle passing through AP and GP is represented bya straight line perpendicular to the line
of position. The arc between AP and GP is the radius of the circle of equal altitude. The distance between AP and the
point where this line, calledazimuth line, intersects the line of position is the intercept, dH. The angle formed by the
azimuth line and the local meridian of AP is calledazimuth angle, Az. The same angle is formed by the line of position
and the parallel of latitude passing through AP (Fig. 4-4).

There are several ways to obtain Az and the true azimuth, AzN, from the right (plane) triangle formed by AP, P1, and
P2:

1. Time-altitude azimuth:

or

Az is not necessarily identical with the true azimuth, AzN, since the arccos function returns angles between 0° and
+180°, whereas AzN is measured from 0° to +360°.
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To obtain AzN, we have to apply the following rules when using the formula for time-altitude azimuth:

2. Time azimuth:

The factor cos Lat is the relative circumference of the parallel of latitude going through AP (equator = 1).

The time azimuth formula does not require the altitude. Since the arctan function returns angles between -90° and +90°,
a different set of rules is required to obtain AzN:

3. Alternative formula:

or

Interestingly, this formula does not require the latitude. The accompanying rules for AzN are:

4. Altitude azimuth:

This formula is directly derived from the navigational triangle (cosine law, see chapter 10 & 11) without using
differential calculus.

or





°<<°°>−°
°<<°°<

=
)1800or(0if360

)360018(or0if

LHAtAz

LHAtAz
AzN

DecLattLat

t

tdLat

Latd
Az

tancoscossin

sin

cos
tan

⋅−⋅
=

⋅
=









>°+
<>°+
<<

=
0rdenominatoif180

0rdenominatoAND0numeratorif360

0rdenominatoAND0numeratorif

Az

Az

Az

AzN

DecLattLat

t
Az

tancoscossin

sin
arctan

⋅−⋅
=

LatHc

LatHcDec
Az

coscos

sinsinsin
arccos

⋅
⋅−=

LatH

LatHDec
Az

coscos

sinsinsin
cos

⋅
⋅−=

h

tDec

tdLat

hd
Az

cos

sincos

cos
sin

⋅−=
⋅

=








 ⋅−=
h

tDec
Az

cos

sincos
arcsin









<−°
>>+°
<>

=
0Decif180

0   tAND   0Decif360

0   tAND   0Decif

Az

Az

Az

AzN



As with the formula for time-altitude azimuth, AzN is obtained through these rules:

In contrast to dH, 
�

H is a measurable quantity, and the position line is curved. Fig. 4-5 shows a macroscopic view of the
line of position, the azimuth line, and the circles of equal altitude.

 

Procedure

Although the theory of the intercept method looks complicated, its practical application is very simple and does not
require any background in differential calculus. The procedure comprises the following steps:

1.

We choose anassumed position, AP, near to ourestimated position. Preferably, AP should be defined by an integer
number of degrees for LatAP and LonAP, respectively, depending on the scale of the chart. Insteadof AP, our estimated
position itself may be used. Plotting lines of position, however, is more convenient when putting AP on the point of
intersection of two grid lines.

2.

We calculate the meridian angle, tAP, (or local hour angle, LHAAP) from GHA and LonAP, as stated above.

3.

We calculate the altitude of the observed body as a function of LatAP, tAP, and Dec (computed altitude):

4.

Using one of the azimuth formulas stated above, we calculatethe true azimuth of the body,AzN, from Hc, LatAP, tAP,
and Dec, for example:
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5.

We calculate theintercept,
�

H, the difference between observed altitude, Ho (chapter 2),and computed altitude, Hc.
The intercept, which is directly proportional to the difference between the radii of the corresponding circles of equal
altitude, is usually expressed in nautical miles:

6.

On the chart, we draw a suitable part of the azimuth line through AP (Fig. 4-6). On this line, we measure the intercept,�
H, from AP (towards GP if

�
H>0, away from GP if

�
H<0) and draw a perpendicular through the point thus located.

This perpendicular is our approximate line of position (red line).

7.

To obtain our position, we need at least one more line of position. We repeat the procedure with altitude and GP of a
second celestial body or of the same body at a different time of observation (Fig. 4-4). The point where both position
lines (tangents) intersect is our fix. The second observation does not necessarily require the same AP to be used. 
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As mentioned above, the intercept method ignores the curvature of the actual LoP's. Therefore, the obtained fix is not
our exact position but animproved position (compared with AP). The residual error remains tolerable aslong as the
radii of the circles of equal altitude are great enough and APis not too far from the actual position (see chapter 16). The
geometric error inherent to the intercept method can be decreased byiteration , i.e., substituting the obtained fix for AP
and repeating the calculations (same altitudes and GP's). This will result in a more accurate position. If necessary, we
can reiterate the procedure until the obtained position remains virtually constant. Since an estimated position is usually
nearer to our true position than an assumed position, the latter may require a greater number of iterations. Accuracy is
also improved by observing three bodies instead of two. Theoretically, the position lines should intersect each other at a
single point. Since no observation is entirely free of errors, we will usually obtain three points of intersection forming an
error triangle  (Fig. 4-8).

Area and shape of the triangle give us a rough estimate of the quality of our observations (see chapter 16). Ourmost
probable position, MPP, is approximately at the center of the inscribed circle of the error triangle (the point where the
bisectors of the three angles of the error triangle meet). 

When observing more than three bodies, the resulting position lines will form the corresponding polygons.

Direct Computation

If we do not want to plot lines of position to determine our fix, we can calculate the most probable position directly from
an unlimited number of observations, n (n > 1). The Nautical Almanac provides an averaging procedure. First, the
auxiliary quantities A, B, C, D, E, and G have to be calculated:

In these formulas, Azi denotes thetrue azimuth of the respective body. The
�

H values are measured in degrees (same
unit as Lon and Lat). The geographic coordinates of the observer's MPP are then obtained as follows:

The method does not correct for the geometric errors inherent to the intercept method. These are eliminated, if
necessary, by iteration. For this purpose, we substitute the calculated MPP for AP. For each body, we calculate new
values for t (or LHA), Hc, 

�
H, and AzN. With these values, we recalculate A, B, C, D, E, G, Lon, and Lat.
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Repeating this procedure, the resulting positions will converge rapidly. In the majority of cases, one or two iterations
will be sufficient, depending on the distance between AP and the true position.

Combining Different Lines of Position

Since the point of intersection of any two position lines, regardless of their nature, marks the observer's geographic
position, one celestial LOP may suffice to find one's position if another LOP of a different kind is available.

In the desert, for instance, we can determine our current position by finding the point on the map where a position line
obtained by observation of a celestial object intersects the dirt road we are using (Fig. 4-9).

We can as well find our position by combining our celestial LOP with the bearing line of a distant mountain peak or any
other prominent landmark (Fig. 4-10). B is the compass bearing of the terrestrial object (corrected for magnetic
declination).

Both examples demonstrate the versatility of position line navigation.


