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Finding One's Position (Sight Reduction)

Lines of Position

Any geometrical or physical line passing through the obsesv(still unknown) position and accessible through
measurement or observation is calletine of position or position line, LOP. Examples are circles of equal altitude,
meridians, parallels of latitude, bearing lines (compasarings) of terrestrial objects, coastlines, rivers, spadilroad
tracks, power lines, et@ single position line indicates an infinite series of posble positions.The observer's actual
position is marked by the point of intersection of at least position lines, regardless of their nature. A positionsthu
found is calledix in navigator's language. The concept of the posithe is essential to modern navigation.

Sight Reduction

Finding a line of position by observation of a celestial @bjie calledsight reduction. Although some background in
mathematics is required to comprehend the process conypl&t®wing the basic concepts and a few equations is
sufficient for most practical applications. The geometricackground (law of cosines, navigational triangle) isegiin
chapter 10 and 11. In the following, we will discuss the sgmaiphic methods developed Bumnerand St. Hilaire.
Both methods require relatively simple calculations onhd anable the navigator to plot lines of position on a
navigation chart oplotting sheet(see chapter 13).

Knowing altitude and GP of a body, we also know the radius efdbrresponding circle of equal altitude (our line of
position) and the location of its center. As mentioned inptbal already, plotting circles of equal altitude on a clirt
usually impossible due to their large dimensions and thisdisns caused by map projection. Howev@uymnerandSt.
Hilaire showed that only a short arc of each circle of equal altitedeeieded to find one's position. Since this arc is
comparatively short, it can be replaced with a seoatangent a of the circle.

Local Meridian, Local Hour Angle and Meridian Angle

A meridian passing through a given position is calledal meridian. In celestial navigation, the angle formed by the
hour circle of the observed body (upper branch) and the loeaidian (upper branch) plays a fundamental role. In
analogy with the Greenwich hour angle, we can measure tlgjke avestward from the local meridian (0°...+360°). In
this case, the angle is callégcal hour angle, LHA . It is also possible to measure the angle westward (0°.0%1&
eastward (0°...-180°) from the local meridian in wich céase calledmeridian angle, t. In most navigational formulas,
LHA and t can be substituted for each other since the triga@idmfunctions return the same results for either of both
angles. For example, the cosine of +315° is theesasrthe cosine of —45°.

LHA as well as t is the algebraic sum of the Greenwich houranfithe body, GHA, and the observer's longitude, Lon.
To make sure that the obtained angle is in the desired rahgdpliowing rules have to be applied when forming the
sum of GHA and Lon:

GHA+ Lon if 0°<GHA+Lon<360°
LHA = < GHA+Lon+360 if GHA+Lon<0°
GHA+Lon-360 if GHA+Lon>36C

‘= GHA+ Lon if GHA+Lon<18C°
" | GHA+Lon-360 if GHA+Lon>180°

In all calculations, the sign of Lon and t, respedy, has to be observed carefully. The sign emtion is:

Eastern longitude: positive
Western longitude: negative
Eastern meridian angle: negative

Western meridian angle: positive



For reasons of symmetry, we will refer to the meridian angl¢hie following considerations although the local hour
angle would lead to the same results (a body rasame altitude with the meridian angle +t andegpectively).

Fig. 4-1 illustrates the various angles involvedha sight reduction process.

Celestial & [+ areedrjwich
. eridian
Body S

@ Zenith

Equator

Sumner’s Method

In December 1837Thomas H Sumnegan American sea captain, was on a voyage from South Carlieenock,
Scotland. When approachir®@j. George's Channélketween Ireland and Wales, he managed to measure a sirgldalt
of the sun after a longer period of bad weather. Using the siglet formula (see chapter 6), he calculated a longitude
from his estimated latitude. Since he was doubtful aboutektimate, he repeated his calculations with two slightly
different latitudes. To his surprise, the three points tbiosined were on a straight line. Accidentally, the linegeas
through the position of a light house off the coast of Waeséll's Ligh}. By intuition, Sumner steered his ship along
this line and soon afte6Gmall's Lightcame in sight. Sumner concluded that he had found a "lingjedlealtitude”. The
publication of his method in 1843 marked the beginning of dem“ celestial navigation [18]. Although rarely used
today, it is still an interesting alternative. dtéasy to comprehend and the calculations to be d@nextremely simple.

Fig. 4-2illustrates the points where a circle of equatwade intersects two chosen parallals of latitude.
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An observer being between Laand Lap is either on the arc A-B or on the arc C-D. With a rough estingdtéis

longitude, the observer can easily find on which of both &eess, for example, A-B. The arc thus found is the relevant
part of his line of position, the other arc is discarded. We approximate the line of position by drawing a straight line
through A and B which is a secant of the circle of equal algtuthis secant is calleSumner line. Before plotting the
Sumner line on our chart, we have to find the larmdg of each point of intersection, A, B, C, and D.

Procedure:
1.

We choose a parallel of latitude (Lanorth of our estimated latitude. Preferably, Lahould be marked by the nearest
horizontal grid line on our chart or plotting sheet



2.

From Lat, Dec, and the observed altitude, Ho, we calculeteneridian angle, t, using the following formula:

sinHo —sinLat[sinDec
cosLat[¢osDec

t = xarccos

The equation is derived from the navigational triangle fitea10 & 11). It has two solutions, +t and —t, since the cosine
of +t equals the cosine of —t. Geometrically, this corregjzonith the fact that the circle of equal altitude intersehts
parallel of latitude at two points. Using the following foufas and rules, we obtain the longitudes of these points of
intersection, Lon and Lon":

Lon =t -GHA
Lon' = 360 -t - GHA

If Lon< -180° - Lon+36C
If Lon'< =180 - Lon'+360°
If Lon'> +180 - Lon'-360°

Comparing the longitudes thus obtained with our estimateselect the relevant longitude and discard the other one.
This method of finding one's longitude is caltede sight (see chapter 6).

3.
We chose a parallel of latitude (Lpasouth of our estimated latitude. The differeneasMeen Latand Laj should not
exceed 1 or 2 degrees. We repeat steps 1 and Zheidecond latitude, Lat

4.

On our plotting sheet, we mark each remaining longitude erctirresponding parallel and plot the Sumner line through
the points thus located (LOP1).

To obtain a fix, we repeat steps 1 through 4 withgame parallels and the declination and obsexftitatde of a second
body. The point where the Sumner line thus obtgih€@dP?2, intersects LOP1 is our fikif. 4-3).
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If we have only a very rough estimate of our latitude, the poihintersection may be slightly outside the interval
defined by both parallels. Nevertheless, the fix is corrAdix obtained withSumner'snethod has a small error caused
by neglecting the curvature of the circles of equal altitudle can improve the fix by iteration. In this case, we choose a
new pair of assumed latitudes, nearer to the fix, and repegbtocedure. Ideally, the horizontal distance betweeh bot
bodies should be 90° (30°...150¢ is tolerable). Otherwise fix would become indistinct. Further, neither of the iesd
should be near the local meridian (see time sight, chapteG@inner'smethod has the (small) advantage that no
protractor is needed to plot lines of position.

The Intercept Method

This procedure was developed by the French navy offgteHilaire and others and was first published in 1875. After
that, it gradually became the standard for sight reductinoesit avoids some of the restrictions $timner'amethod.
Although the background is more complicated thath @umner'snethod, the practical application is very convehie

Theory:

For any given position of the observer, the altitude of a stedé body, reduced to the celestial horizonsidely a
function of the observer's latitude, the declinatid the body, and the meridian angle (or localrfamgle). Thaltitude
formula is obtained by applying the law of cosine for sitie the navigational triangle (see chapter 10 & 11

H = arcsin(sinLat[$inDec+ cosLat [@osDeclost)

We choose an arbitrary point in the vicinity of our estimapedition, preferably the nearest point where two grid lines
on the chart intersect. This point is calladsumed position AP (Fig. 4-2). Using the above formula, we calculate the
altitude of the body resulting from Lagt and Lonp, the geographic coordinates of AP. The altitude thus obthis

calledcomputedor calculated altitude, Hc.

Usually, Hc will slightly differ from the actuallybserved altitude Ho (see chapter 2). The differencéH, is called
intercept.

AH =Ho-Hc
Ideally, Ho and Hc are identical if the observeati\P.

In the following, we will discuss which possible positionsthe observer would result in the same interceyt,. For
this purpose, we assume that the intercept isfant@simal quantity and denote it by dH. The gehéormula is:

OH G at+ M

0 Lat ot

dH =

This differential equation has an infinite number of sans. Since dH and both differential coefficients are cantsia
can be reduced to an equation of the general form:

dLat=a+bldt

Thus, the graph is a straight line, and it is sigfit to dicuss two special cases, dt=0 and dLatspectively.

In the first case, the observer is on the same meridian as#dPdld is solely caused by a small change in latitude, dLat,
whereas t is constant (dt = 0). We differentiatedhitude formula with respect to Lat:

sinH = sinLat[sinDec+ cosLat[cosDeclcost
d(sinH) = (cosLat[sinDec-sinLat[GosDecl¢ost) [d Lat

cosH [dH = (cosLat[$in Dec-sinLat [¢osDecl¢ost) (@ Lat

cosH
cosLat 3in Dec—sin Lat [cos Dec[¢ost

dLat =



Adding dLat to Latp, we obtain the point P1, as illustrated-ig.4-4. P1 is on the observer's circle of equal altitude.
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In the second case, the observer is on the same paralleitatiabs AP, and dH is solely caused by a small change in
the meridian angle, dt, whereas Lat is constanatiel). We differentiate the altitude formula witsspect to t:

sinH = sinLat[sinDec+ cosLat[cosDeclcost
d(sinH) = —cosLatGosDeclSint [dt

cosH [dH = —cosLatlcosDeclsint[dt

cosH
cosLat¢osDec[3int

dt= -

Adding dt (corresponding with an equal change in longitutiegn) to Lomp, we obtain the point P2 which, too, is on
the observer's circle of equal altitude. Thus, we would mesaklo at P1 and P2, respectively. Knowing P1 and P2, we
can plot a straight line passing through thesetiposi. This line is a tangent of the circle of dopltitude and is ouline

of position, LOP. The great circle passing through AP and GP is representadsbight line perpendicular to the line
of position. The arc between AP and GP is the radius of théecotequal altitude. The distance between AP and the
point where this line, calledzimuth line, intersects the line of position is the intercept, dH. Thglariormed by the
azimuth line and the local meridian of AP is callegimuth angle, Az. The same angle is formed by the line of position
and the parallel of latitude passing through ARy(4-4).

There are several ways to obtain Az and the true azimut, fam the right (plane) triangle formed by AP, P1, and
P2:

1. Time-altitude azimuth:

dH _ cosLat[sinDec-sinLat[cosDeclcost

COSAz= =
dLat cosH

or

{cosLat [$inDec—-sinLat l]:osDeclItostj
Az=arcco
cosH

Az is not necessarily identical with the true azimuth,yAsince the arccos function returns angles between 0° and
+180°, whereas Ayis measured from 0° to +360°.



To obtain Az, we have to apply the following rules when using tormula for time-altitude azimuth:

ny = | AZ if t<0° (or 180° < LHA<360")
N7 1360—Az if t>0° (or 0°< LHA<18()
2. Time azimuth:
tanAz = dLat _ sint

coslLat [dlt sinLat[¢ost —cosLat [fanDec

The factor cos Lat is the relative circumferencéhefparallel of latitude going through AP (equatdt).

sint
Az=arctan—
sinLat [¢ost —cos Lat ar Dec

The time azimuth formula does not require the altitude. Sthe arctan function returns angles between -90° and +90°,
a different set of rules is required to obtainAz

Az if numeratockO AND denominato<O
Az, = 1 Az+360° if numerator0 AND denominato<O
Az+18C if denominato>0

3. Alternative formula:

. dh cosDeclsint
SInAz= = -
coslLat [dt cosh
or
. ( cosDecBintj
Az=arcsin - ——M—
cosh

Interestingly, this formula does not require thi#tude. The accompanying rules foryare:

Az if Dec>0 AND t<O
Az, = 1360+Az if Dec>0 AND t>0
180°-Az if Dec<O

4. Altitude azimuth:

This formula is directly derived from the navigational trige (cosine law, see chapter 10 & 11) without using
differential calculus.

sinDec-sinH [sinLat
cosH [¢cosLat

COSAz =

or

sinDec-sinHclsinLat
cosHc [¢osLat

Az = arccos



As with the formula for time-altitude azimuth, f\is obtained through these rules:

{Az if t<0° (or 180°<LHA<360)
Az, =

360P- Az if t>0° (or 0° < LHA<180)

In contrast to dHAH is a measurable quantity, and the position kneurvedFig. 4-5shows a macroscopic view of the
line of position, the azimuth line, and the ciratéequal altitude.
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Procedure

Although the theory of the intercept method looks compédatits practical application is very simple and does not
require any background in differential calculuseTirocedure comprises the following steps:

1.

We choose amssumed position AP, near to ourestimated position Preferably, AP should be defined by an integer
number of degrees for Lat and Lonp, respectively, depending on the scale of the chart. InadéadP, our estimated
position itself may be used. Plotting lines of position, lewer, is more convenient when putting AP on the point of

intersection of two grid lines.
2.

We calculate the meridian anglgp,t(or local hour angle, LHA,) from GHA and LoRg, as stated above.

3.

We calculate the altitude of the observed bodyfasetion of Lajp, tap, and Dec (computed altitude):

Hc = arcsin(sinLat,, [$inDec+ coslLat,, [GosDecltost,, )

4.

Using one of the azimuth formulas stated above, we calcti@tue azimuth of the body,Azy, from Hc, Lakp, tap,
and Dec, for example:

sinDec-sinHclsinlLat,,
cosHc[¢osLat,

Az = arccos

[ Az if t<0° (or 180° < LHA<360")
i 360P— Az if t>0° (or 0°<LHA<180)



5.
We calculate théntercept, AH, the difference between observed altitude, Ho (chaptear®),computed altitude, Hc.

The intercept, which is directly proportional to the diffece between the radii of the corresponding circles of equal
altitude, is usually expressed in nautical miles:

AH[nm] = 60{Ho[°] - Hc[°])

6.
On the chart, we draw a suitable part of the azimuth line thho&P (Fig. 4-6). On this line, we measure the intercept,

AH, from AP (towards GP iAH>0, away from GP ifAH<0) and draw a perpendicular through the point thus located
This perpendicular is our approximate line of gosifred line).

to GP

Fig. 4-6 " (H>0)

7.

To obtain our position, we need at least one more line of positVe repeat the procedure with altitude and GP of a
second celestial body or of the same body at a different tifrebservation Fig. 4-4). The point where both position
lines (tangents) intersect is our fix. The secobseovation does not necessarily require the sami AR used.

Fig. 4-7
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As mentioned above, the intercept method ignores the awnevatf the actual LoP's. Therefore, the obtained fix is not
our exact position but ammproved position (compared with AP). The residual error remains tolerabléoag as the
radii of the circles of equal altitude are great enough andsAit too far from the actual position (see chapter 16). The
geometric error inherent to the intercept method can beedsed byteration, i.e., substituting the obtained fix for AP
and repeating the calculations (same altitudes and GRi&).Will result in a more accurate position. If necessary, we
can reiterate the procedure until the obtained positioranesnvirtually constant. Since an estimated position isaligu
nearer to our true position than an assumed position, ther laiay require a greater number of iterations. Accuracy is
also improved by observing three bodies instead of two. Téteally, the position lines should intersect each other a
single point. Since no observation is entirely free of esrave will usually obtain three points of intersection fongian
error triangle (Fig. 4-8).
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Area and shape of the triangle give us a rough estimate ofuhéty)of our observations (see chapter 16). @ost
probable position, MPP, is approximately at the center of the inscribed circle efhror triangle (the point where the
bisectors of the three angles of the error triangget).

When observing more than three bodies, the regyftirsition lines will form the corresponding polyo

Direct Computation

If we do not want to plot lines of position to deténe our fix, we can calculate the most probalusitpn directly from
an unlimited number of observations, n (n > 1). The Nauticltha@ac provides an averaging procedure. First, the
auxiliary quantities A, B, C, D, E, and G have tdalculated:

A= Zn:cos2 Az B = Zn:sinAz [CoSAZ C= Zn:sinzAz

i=1 i=1 i=1

=]

_ Y.
D =Y (AH) osAz  E = Y (AH),BinAz G=AL-B

n
i=1

!
[y

In these formulas, Azdenotes thérue azimuth of the respective body. Théd values are measured in degrees (same
unit as Lon and Lat). The geographic coordinateb®bbserver's MPP are then obtained as follows:

Lon = LonAP + M Lat = LatAP + M
GldosLat,,

The method does not correct for the geometric errors inthei@nhe intercept method. These are eliminated, if
necessary, by iteration. For this purpose, we substitigecticulated MPP for AP. For each body, we calculate new
values for t (or LHA), HcAH, and Az,. With these values, we recalculate A, B, C, DGELon, and Lat.



Repeating this procedure, the resulting positions willvarge rapidly. In the majority of cases, one or two iteragion
will be sufficient, depending on the distance betw@P and the true position.

Combining Different Lines of Position

Since the point of intersection of any two position linegyaelless of their nature, marks the observer's geographic
position, one celestial LOP may suffice to find 'sneosition if another LOP of a different kind isdable.

In the desert, for instance, we can determine our currentipody finding the point on the map where a position line
obtained by observation of a celestial object seets the dirt road we are usifgd. 4-9.
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We can as well find our position by combining our celestialR®ith the bearing line of a distant mountain peak or any
other prominent landmarkF{g. 4-10. B is the compass bearing of the terrestrial object (ceededor magnetic
declination).
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Both examples demonstrate the versatility of positine navigation.



